
 

 
 

 
 NUAV@NUSec DESIGN DOCUMENTATION 

 
 

[Due to this year’s constraints, our documentation logo is virtual and can be emulated in QEMU 
rather than being present here]​1 

  
 

Version 0.99+0.01 
 
 
 

 
 
 

 
 

Cameron Kennedy 
Dennis Giese 
Erik Uhlmann 

 
© 2021 NUSec 
www.nusec.us 

 
Advised by: Prof. Guevara Noubir 

(Northeastern University) 
  

1 Same applies to our EULA 

 German Engineering 

 Made in USA 



NUSec confidential 

 

Overview 3 
System design idea 3 
Security goals 4 
Protection of flags 5 

 

Features 6 
 

Implementation 8 
Keys and Configuration 8 
Relation DEV_ID, SCEWL_ID and SED_ID 9 
Provisioning procedures 10 
Runtime procedures 11 

 

  

 
1 



NUSec confidential 

Overview 

System design idea 
The first line of defense for our system design was our Terms of Service and EULA, where we 
sue any customer who dares hack our design or gain control of UAVs. We spent most of our 
time and budget discussing the EULA and deciding on our team name and emoji. Unfortunately, 
we were informed that the EULA was not actually enforceable or legally binding, so we quickly 
tried to implement some technical security measures in the remaining time. 
 
The core SCEWL Bus system implements cryptographic protection of messages over the air, 
offering resilience against message forgery, tampering, and replay. Additionally, software 
protections lock down the system in the face of software exploits and make it more challenging 
to perform side-channel analysis. 
 
In order to make it easier to manage cryptographic key material for many devices, we utilize a 
system of floating keys, which are dynamically distributed to booting devices by the SCEWL 
Security Server. This enables the design to save a lot of RAM which can be used for other 
security protections. Devices sign and encrypt messages which can only be decrypted by the 
intended target devices by using the target device keys to encrypt the key material for the 
message contents. Additionally, every message uses a random key for its contents, and we 
obfuscate the other encryption and signing operations with randomized fake operations to make 
SCA difficult, which is also protected by rate-limiting of send and receive operations within the 
allowed timing constraints. We additionally made modifications to the monocypher crypto library 
to add randomized delays to all crypto operations used by our code. Two levels of replay 
counters in the messages protect against replay attacks, and are constantly synchronized 
across the whole swarm using periodic internal broadcasts, as well as by the SSS when a 
device registers and deregisters in the live deployment. 
 
Runtime entropy for any random numbers needed by our system is provided by a PRNG 
seeded with secure random bytes sent in the SSS registration flow, combined with entropy 
embedded into each controller binary. The entropy is periodically mixed by combining it with the 
system tick counter, in particular the tick counter values during I/O operations, ensuring that it 
becomes increasingly unpredictable even if the initial state is somehow leaked. Our PRNG 
implementation additionally includes randomized fake PRNG operations to thwart side-channel 
analysis on the real internal PRNG state.  
 
Finally, we have enabled MPU-powered protection of memory regions against unauthorized 
reads, writes, and code execution, as well as stack canaries and MPU no-permissions zones for 
protection against buffer overflows. Additionally, the runtime system emits no diagnostic 
information of any kind which could be picked up by attackers, even in the case of errors. 

 
2 



NUSec confidential 

Security goals 

Confidentiality 
Messages should be only decryptable and readable to the intended recipients. We will use both 
symmetric and asymmetric cryptography to achieve this goal. 

Integrity 
Messages should be protected against changes. We use Authenticated Encryption with 
Associated Data (AEAD) and signatures to prevent attackers of modification of messages. 

Authentication 
Messages in the deployment should be only accepted if they origin from authorized devices. 
This will be ensured by maintaining a list of authorized public keys and device identities. All 
messages need to have a signed message header, which can be verified by the receiving 
device. 

Replay Protection 
Attackers could try to replay existing messages again into the system. This will be prevented 
due to our implementation of freshness verification. Devices will know the current status of the 
message counter of a particular device and can reject replayed messages. In addition, we will 
use time-stamps and will reject messages which fall outside a timeframe. 

Defense-in-Depth 
To defend against buffer overflows, we enable the Memory Protection Units (MPU) functionality 
and use a new revision of our famous ​Protectonator™. ​These mechanisms prevent attackers 
from using any vulnerability in our code. The SSS was implemented in Racket​2​, according to the 
Design Recipe​3​ which provides useful abstractions for safe, efficient I/O with devices​4​. 
To protect against side channel attacks, we developed multiple defenses. For example, we 
obfuscate the swarm key, so that it is more difficult to observe. Our crypto operations are 
executed with both, real and fake keys. The order of the operations are randomized. In addition 
we add random delays before, inside and after crypto operations. The receiving and sending 
operations are rate-limited and increase the required time for side-channel attacks. To hide real 
transmissions, the swarm transmits fake messages.   

2 ​https://racket-lang.org/ 
3 ​https://htdp.org/2020-8-1/Book/part_preface.html#(part._sec~3asystematic-design) 
4 Since the Ubuntu repos were 8 versions behind, we decided to compile the current Racket 8.0 release 
from source in our Dockerfiles. Be warned that this can make the first-time ​create_deployment​ step of 
our system take a bit of time 

 
3 

https://racket-lang.org/
https://htdp.org/2020-8-1/Book/part_preface.html#(part._sec~3asystematic-design)


NUSec confidential 

Protection of flags 

UAV ID Recovery 
“Read a broadcasted SCEWL Transmission” 
When the device is provisioned it gets device specific keys. We are not using any long-term, 
systemwide used message encryption keys. All communications, including broadcasts are 
encrypted end-to-end. Therefore, a device which is not registered and correctly provisioned, will 
not receive a communication. Key material on a particular device will be protected by 
anti-side-channel measurements. 

Package Recovery 
“Read a targeted SCEWL Transmission” 
Same as for broadcasted messages, targeted messages are encrypted for one particular party 
with its public key. An attacker requires the private key to decrypt that message. This key is only 
stored on the SED and the SSS. 

Recovery Mode 
“Modify the content of a SCEWL Transmission” 
All messages are encrypted for one particular party and are signed by the sender. In addition, 
the payload is encrypted using a message key and AEAD encryption. This ensures the integrity 
of the payload. Broken messages cannot be decrypted and will not be forwarded to the CPU. 

Drop Package 
“Have full control of the plaintext contents of a SCEWL Transmission” 
Similar as for the Recovery Mode, the integrity of the message is protected. In order to be able 
to send messages, the attacker would need the private key of a device and would need the 
public key of the target device. This information should not be available. Additionally, due to the 
encryption of the header with a master key, the attacker cannot observe device IDs of packets. 

No-Fly Zone 
“Take control of the UAV” 
Being able to inject traffic requires again the presence of key material. A already sent message 
cannot be replayed, as devices keep track of a message counter. This counter gets updated 
every time a device receives a message or gets registered at the base. Additionally,  we use a 
instance counter, so that newly deployed drones will not accept old messages. A timer is 
synchronized among all devices. Messages are only accepted if they have a valid counter and 
instance id. 

  

 
4 



NUSec confidential 

Features 

Simple and scalable system 
System supports up to 256 provisioned devices, with up to 24 of them being in use at the same 
time. A ​message of 16 kBytes to 24 devices takes only 143 μs​5​. The overhead is minimal. 
By using the same operations for directed and broadcasted messages, the codebase is 
smaller, the attack surface is reduced, and the software is more efficient. 

Device Anonymity 
SED IDs and SCEWL IDs are not assigned permanently. Instead the SED IDs are used from a 
pool every time a Device gets registered. In addition, the keys are rotated. 
Due to the design, the protocol does not reveal the source and destination of a particular 
communication. Also, fake messages are transmitted in between real messages. 

Proven and standard cryptography 
Our design uses well proven modern cryptographic methods. We use Monocypher​6​, which is a 
small and efficient library, that provides all the functionality we need. The design uses the 
following methods: X25519 and XChaCha20 for encryption, Ed25519 for signatures and 
Blake2b for challenge-response authentication. Additionally, a random number generator is 
used to ensure secure cryptographic operations. It is seeded with external entropy. To protect 
key material, it is stored only in volatile memory. A leakage of binaries does not break any 
security guarantees. 

Side-channel protections 
Our system was designed with side-channel attacks in mind. For this we implemented multiple 
counter measurements against side-channel attacks: 

1. All cryptographic operations contain random delays with random XOR operations. This 
prevents the alignment of traces in side-channel attacks. 

2. Secret keys are blinded before use 
3. Cryptographic operations are run multiple times with one real and multiple fake keys. 

The order of operations is randomized and fake computations are not used. In traces 
these operations are not immediately distinguishable from each other. 

5 However, the CPU interface is still rate-limited by the controller according to about 50% of the allowed 
timing requirements 
6 ​https://monocypher.org/ 

 
5 

https://monocypher.org/


NUSec confidential 

Buffer overflow protection 
The used TI chip supports Memory Protection Units (MPU)​7​, which is implemented by QEMU​8​. 
We configure and use this feature to protect our memory against buffer overflow attacks and 
unexpected behaviour. In addition, we implemented an additional level of memory protection, 
which will prevent any buffer overflows. 

  

7 ​https://www.ti.com/lit/ds/symlink/lm3s6965.pdf 
8 During implementation of this security measurement we accidentally marked the .text section as 
no-execute and then were wondering why the controller exploded 

 
6 

https://www.ti.com/lit/ds/symlink/lm3s6965.pdf


NUSec confidential 

Implementation 

Keys and Configuration 
DEV_ID​ and ​SCEWL_ID​ are the same and are interchangeable. 
 

● Factory 
○ Dev_credentials (​DEV_ID, Dev_Key​): unique device ID and secret string to 

serialize and identify devices 
○ Dev_DB: ​list of all created devices with​ DEV_ID ​and​ Dev_Key, ​used by the SSS 

to authenticate devices 
● SSS 

○ swarm_key: ​symmetric encryption key which is distributed to all registered 
devices and used for encryption of a packet header 

○ SED_credentials (​SED_ID, SED_xchgKey, SED_signKey​): asymmetric key 
material for registered devices, will be reassigned after de-registration 

○ SED_DB (SED_credentials, counter, assigned ​DEV_ID​, dereg_password, 
timeout, instance_counter): Pool of 24 generated SED_credentials (16 in use, 8 
spare), with last known counter and information about the assigned device.  

● Unregistered device 
○ Dev_credentials(​DEV_ID, Dev_Key​): unique ID and secret string to serialize and 

identify devices, programmed in the factory and stored in flash memory 
● Registered device/SED 

○ Dev_credentials(​DEV_ID, Dev_Key​): unique device ID and secret string to 
serialize and identify devices, programmed in the factory and stored in flash 
memory 

○ swarm_key: ​symmetric encryption key which is distributed to all registered 
devices and used for encryption of a packet header 

○ SED_credentials (​SED_ID, SED_xchgKey, SED_signKey, current_counter, 
instance_counter​): asymmetric key material for registered devices and current 
message counter 

■ xchgKey : ​x25519 keypair 
■ signKey : ​ed25519 keypair 

○ SED_pub_DB (​SED_ID, SED_xchgPubkey, SED_signPubkey, DEV_ID, 
counter, instance_counter): ​Array of the public information of the SED_DB, 
provisioned by the SSS at registration. The SCEWL_ID can be updated through 
broadcasts. Counter keeps track of seen message IDs and is used for message 
freshness. 

○ random_seed​: seed for entropy, provisioned by the SSS at registration 
○ time​: time provisioned by the SSS 
○ dereg_password​: SED-specific password that gets set by the SSS and locks the 

wired interface 
 

 
7 



NUSec confidential 

Relation DEV_ID, SCEWL_ID and SED_ID 

 

  

 
8 



NUSec confidential 

Provisioning procedures 
 

Create Deployment (Create_deployment) 
(1a_create_sss.Dockerfile)​  →  SSS Docker is build here 

 
1. Install Racket compiler 
2. Get random seeds from Random.org 

 

Add Device to deployment (Add_sed) 
(2b_create_sed_secrets.Dockerfile)​ → reuses SSS Docker  

 
1. Get random seeds from Random.org 
2. Generate Dev_Key (16 Byte secret string) for DEV_ID 
3. Store DEV_ID:Dev_Key in SSS Database (SQLite) 

 
(2c_build_controller.Dockerfile) 
 

1. Get random seeds from Random.org 
2. Build controller containing 

a. DEV_ID:Dev_Key 
b. Entropy 

3. Delete unused secrets 
 

Remove Device from deployment (remove_sed) 
- Remove DEV_ID from SSS Database 

 

  

 
9 



NUSec confidential 

Runtime procedures 

Launch SSS (launch_sss_d) 

Structs 

Swarm-key 
32 bytes random data 

 
DEV_DB 

● List of up to 256 Devices 
○ DEV_ID: Device ID programmed at factory 
○ Dev_Key: Secret key for Device 

 
SED_DB 

● Array with 24 Entries 
○ SED ID 
○ Xchg-key: X25519 keypair for encryption 
○ Sign-key: Ed25519 keypair for signatures 
○ DEV_ID: assigned device SCEWL_ID 
○ Counter: Last known counter value for the particular SED 
○ Dereg-time: deregistration timeout 
○ Dereg-password: deregistration password 
○ Inst_counter: Last known instance for the particular SED 

 

Flow 

1. Generate symmetric key swarm-key 
2. Generate 24 SED entries in SED_DB 

 

 
 
 
 
 

 
10 



NUSec confidential 

Registration of SED device (Scewl_register) 

Used methods  
● Blake2b hash function 

Required data 
● SSS_Password: secret for a deployment 
● DEV ID: id between 1-256 identifying a device (aka SCEWL_ID) 
● DEV_KEY: secret key for a specific DEV ID 

Structs 
sss_handshake_out1 

● nonce_n : random nonce provided by the unprovisioned device 
● id: device id, for unprovisioned devices = -1 

 
sss_handshake_in 

● nonce_y : random nonce provided by the SSS 
● auth : authentication message, blake2b(SSS_password, nonce_n, nonce_y) 

 
sss_handshake_out2 

● nonce_y: random nonce provided by the SSS  
● dev_id: Device ID generated at the factory (id between 1-256) 
● auth: authentication message, blake2b(DEV_KEY, nonce_n, nonce_y) 

 
sss_prov_pkg 

● SED: ID (1-24) 
● xchg_sec: Secret portion of the device encryption key 
● sign_sec: Secret portion of the device signature key 
● swarm_key: Secret for encryption of the header 
● Dev_pub: Array with information about all 24 SED 

○ Xchg_pub :Public portion of the device encryption key 
○ sign_pub: Public portion of the device signature key 
○ Scewl_id: id between 1-256 
○ Counter: Last known counter value for the particular SED 
○ Inst_counter: Last known instance for the particular SED 

● runtime_entropy: initial entropy 
● Dereg_password: password for the deregistration 
● Unix_seconds: current unix time 

 

 
11 



NUSec confidential 

Registration protocol flow 

 
 

  

 
12 



NUSec confidential 

De-Registration of SED device (Scewl_deregister) 

Used methods  
● Blake2b hash function 

Required data 
● DEV ID: id between 1-256 identifying a device 
● DEV_KEY: secret key for a specific DEV ID 
● SED ID: assigned SCEWL ID to SED 
● DEREG password: deregistration password for a deployed SCEWL ID 

Structs 
sss_handshake_out1 

● nonce_n : random nonce provided by the unprovisioned device 
● id: SCEWL ID 

 
sss_handshake_in 

● nonce_y : random nonce provided by the SSS 
● auth : authentication message, blake2b(DEREG password, nonce_n, nonce_y) 

 
sss_handshake_out2 

● nonce_y: random nonce provided by the SSS  
● dev_id: Device ID generated at the factory 
● auth: authentication message, blake2b(DEV_KEY, nonce_n, nonce_y) 

 
Sss_deprov_pk 

● Dev_pub: Array with information about all 24 SED 
○ Xchg_pub :Public portion of the device encryption key 
○ sign_pub: Public portion of the device signature key 
○ Scewl_id: (id between 1-256) 
○ Counter: Last known counter value for the particular SED 
○ Inst_counter: Last known instance for the particular SED 

 

  

 
13 



NUSec confidential 

Registration protocol flow 
 

 

 

  

 
14 



NUSec confidential 

Sending Direct Message (secure_send) 

Direct messages are technically broadcasts, which only contain one valid header slot. SED 
devices that are not recipients have only random data in the header and wont be able to decrypt 
it. Other than that, there are no differences between direct and broadcasted messages. 

Used methods  
● X25519 
● Ed25519 
● XChaCha20 

Required data 
● SED ID: assigned ID to the target 
● TGT SCEWL ID: (id between 1-256) 
● TGT Instance counter: current instance of target 
● Counter : current message counter 

Structs 
Message keys 

● Msg_key:​ Random 32byte key for message encryption 
● Fake msg_key:​ Random 32byte key used to fake key in headers 

 
Inner header (secure_header) 

● real_src: SCEWL ID of source 
● real_tgt: SCEWL ID of target/ or broadcast 
● sh_type: message type 
● counter: message counter 
● Src_inst_counter: instance counters 
● Dst_inst_counter: instance counters 

 
Outer header (locked_msg) 

● Key_material: 24x encrypted headers per each SED in deployment 
○ Nonce 
○ Mac 
○ message_key: message key 

● nonce 
● Mac 
● Sig: signature 
● secure_header 
● Msg: encrypted message 

 

 
15 



NUSec confidential 

Sending direct message protocol flow 

 

 
16 



NUSec confidential 

 

Sending Broadcast Message (secure_send) 

Broadcasts are packets where all SED headers are locked correctly. The individual SED can 
decrypt “their” header. Other than that, there are no differences between direct and broadcasted 
messages. 

Used methods  
● X25519 
● Ed25519 
● XChaCha20 

Required data 
● SED ID: assigned ID to the target 
● TGT SCEWL ID: set to broadcast 
● TGT Instance counter: current instance of target 
● Counter : current message counter 

Structs 
Message keys 

● Msg_key:​ Random 32byte key for message encryption 
● Fake msg_key:​ Random 32byte key used to fake key in headers 

 
Inner header (secure_header) 

● real_src: SCEWL ID of source 
● real_tgt: SCEWL ID of target/ or broadcast 
● sh_type: message type 
● counter: message counter 
● Src_inst_counter: instance counters 
● Dst_inst_counter: instance counters 

 
Outer header (locked_msg) 

● Key_material: 24x encrypted headers per each SED in deployment 
○ Nonce 
○ Mac 
○ message_key: message key 

● nonce 
● Mac 
● Sig: signature 
● secure_header 
● Msg: encrypted message 

 
17 



NUSec confidential 

Sending broadcast message protocol flow 

 
 

 
18 



NUSec confidential 

Receiving Message (secure_recv) 

From the perspective of the receiving device, there are no differences between direct and 
broadcasted messages. 

Used methods  
● X25519 
● Ed25519 
● XChaCha20 

Structs 
 

Outer header (locked_msg) 
● Key_material: 24x encrypted headers per each SED in deployment 

○ Nonce 
○ Mac 
○ message_key: message key 

● nonce 
● Mac 
● Sig: signature 
● secure_header 
● Msg: encrypted message 

 
Inner header (secure_header) 

● real_src: SCEWL ID of source 
● real_tgt: SCEWL ID of target/ or broadcast 
● sh_type: message type 
● counter: message counter 
● Src_inst_counter: instance counters 
● Dst_inst_counter: instance counters 

 
 
 

 
19 



NUSec confidential 

Receiving message protocol flow 

 
 
 
 
 
 
 
 

 
20 



NUSec confidential 

 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This Page Intentionally Left Blank 
 

 
21 


