
NUSec: CSAW Embedded Security Challenge
Report 2020

Dennis Giese (Lead)
NUSec

Northeastern University
Boston, MA

Cameron Kennedy
NUSec

Northeastern University
Boston, MA

Erik Uhlmann
NUSec

Northeastern University
Boston, MA

Guevara Noubir, PhD. (Advisor)
NUSec

Northeastern University
Boston, MA

Abstract—Internet-of-Things devices have become ubiquitous
in modern-day smart infrastructure. With tens of billions of IoT
devices estimated to be connected today, the security of IoT is
critical, but many devices still suffer from security vulnerabilities.
The challenges provided in this competition involved an IoT Wi-
Fi access point running on a RISC-V single-board computer.
This report summarizes and discusses how we (NUSec) reverse-
engineered and analyzed the provided firmware binaries to solve
the provided challenges.

Index Terms—CSAW-ESC, RISC-V, Ghidra, Static Analysis,
Reverse Engineering, Theorem Proving

I. INTRODUCTION

The NUSec CTF team leveraged a number of static and
dynamic analysis techniques in order to solve the challenges
given in the 2020 CSAW-ESC. We used Ghidra [1], along
with the ghidra riscv [6] plugin, as our primary static analysis
tool. Whenever applicable, we relied on the Z3 theorem
prover [3] to solve problems within the scope of Satisfiability
Modulo Theories (SMT), such as Set A / Burst, rather than
utilizing a simple exhaustive search. In situations where Z3
had trouble solving models we constructed for challenges, we
either narrowed down the model to a more efficient one (e.g.,
fully emulating/predicting the Random Number Generator in
Set B / Chase by enumerating the entire random space),
implementing solution search trees optimized to efficiently
search the solution space by discarding invalid branches (such
as the reused-one-time-pad solver in Set C / Recycle), and
when no other options worked (e.g., for Speck-like crypto
in Set D / Corrupt, which has no known-plaintext attack
available), we would resort to a more basic exhaustive search
technique. Over the course of the competition, we developed
the capability to sniff traffic over the SPI bus by soldering
leads onto the relevant pins of the ESP32 chip and analyz-
ing the traces with sigrok [9]. Additionally, we developed
the novel capability of dynamically calling functions in the
challenge binaries from arbitrary instrumentation code via a
custom linker script and QEMU emulation, which enabled
efficient offline dynamic instrumentation of original challenge
code without the need to debug or instrument the real chal-
lenge hardware, or manually lift challenge functions to an
emulatable form. This greatly increased the automation and
efficiency of our challenge solving process, and minimized the
time needed on the actual challenge hardware to solve each

challenge. To further increase efficiency, we developed a set
of scripts to ease deployment and interaction of the challenges
on the challenge hardware, working around issues such as
the unreliable Wi-Fi module, and enabling our automated
challenge solving scripts to reliably function. We aimed to
make all of our results as reproducible as possible with
the development of automated solving scripts for challenges
that required complex or precisely timed interaction, and in
fact reproduced each result multiple times while creating the
materials for the final submission. With this set of tools, it was
possible for the NUSec CTF team to solve each challenge from
the released problem sets, including the original version of Set
B / Middleman.

II. METHODOLOGY

To analyze the provided firmware binaries we leveraged a
combination of static analysis, on-device dynamic analysis,
and emulation-based dynamic analysis. Additionally, remote
work on challenges was enabled by setting up an Atomic Pi
board connected to the RISC-V challenge board, and enabling
the HiFive toolchains and SSH access. This allowed our team
members to deploy, investigate, and attack different challenge
binaries without being physically in the Northeastern Univer-
sity Cybersecurity and Privacy Institute lab, which helped the
team solve challenges in the face of COVID-19 distancing
recommendations. Additionally, we utilized pwntools [8] to
automate the exploitation for certain challenges that required
precise sequences of actions, as well as our own series of
scripts to automate the process of uploading challenges to
the board, reconnecting to Wi-Fi more reliably, and starting
OpenOCD and GDB for on-board debugging. All of our utility
scripts and challenge solving code is provided in the associated
archive of code files alongside this report.

A. Static Analysis

In order to analyze the code contained in the provided
challenge binaries, we used the open-source software reverse
engineering tool Ghidra [1] and the RISC-V processor exten-
sion ghidra riscv [6] to disassemble, decompile, and annotate
the binaries. The inclusion of DWARF debug information and
symbols in the binaries assisted with identifying the challenge
functions of interest. Using Ghidra, we determined the archi-
tecture of the challenges, with the earlier challenges being

based on bare metal RISC-V code and the later ones being
based on the open source FreeRTOS. Additionally, we installed
a central Ghidra server for collaborative reverse-engineering of
the challenge binaries, which was also instrumental in enabling
our team to solve challenges remotely.

B. Emulation

To isolate components of challenges, such as single func-
tions that performed verification of inputs, we created a linker
script and staging code to allow loading challenge binaries
in QEMU [5] user-mode emulation (qemu-riscv32). The
script works by linking a Linux RISC-V 32-bit binary in-
cluding arbitrary C code, staging code, and the full challenge
binary contents extracted from the provided ELF files. The
staging code then moves the challenge binary to the address
0x20010000, and additionally maps 0x80000000 to create
a memory map similar to the provided board environment. The
C code can then call functions by address in the binary, which
allowed for fast offline dynamic analysis without needing the
board. To emulate code that invoked hardware peripherals of
the challenge board, we were also able to dynamically patch
the challenge binary code to skip the hardware accesses. This
proved invaluable for the dynamic analysis of many of the
challenges, as it was much easier to be able to run challenge
code locally than debug it once it is loaded on the real
challenge hardware. This script can be found in the provided
source code – esclinker.py.

C. Hardware Probing

We were able to sniff the communication between the main
RISC-V SoC and the ESP32 wifi module by probing the SPI
bus connecting them. We soldered wires onto the SPI pins
of the ESP32 module, and used a generic FX2-compatible
USB logic analyzer and the open source Sigrok/PulseView [9]
software to decode the SPI traffic and display the contents.
This assisted in debugging and determining the state of some
of the challenges, and facilitate the development of solutions.
The setup can be seen in figure 1.

III. RESULTS

A. Challenge Set A / Amnesia

In this challenge, we discovered that the challenge()
function first compared its input to some data on the BLE
partition on the Wi-Fi module via the SPI bus. If the input
matches the stored data, the function returns correct, and the
point score is printed. If the input does not match the stored
data, the function first stores the input on the BLE partition,
and then calculates the “yodel” corresponding to the input.
It is worth noting that this process is time-consuming and
requires a large number of operations. The function then stores
the yodel on the BLE partition, overwriting the original data
which it had previously written. Our solution to this challenge
was to provide an arbitrary input A to the board (of at least 7
characters), and then reset the board while it was computing
the “yodel” of A. By doing so, we let the challenge()
function write A to the BLE parition, and prevent it from

Fig. 1. Setup for remote work: Atomic Pi with attached HiFive board and
logic analyzer

overwriting it with the “yodel” of A. We discovered that
resetting the board does not wipe the BLE partition on the
WiFi module. After the board reset, we provided A once again
as input, and were presented with a message indicating we
had solved the challenge. The message includes the raw AT
command result containing the ESP32 module flash contents,
combined with the message “Correct! Save key for report”,
and no other data. Therefore we have included this printout in
the appendix.

B. Challenge Set A / Breakfast

By performing static analysis on the challenge binary, we
discovered that the challenge() function accepts an input
which it tokenizes using " " as a separator into an integer
C and a string S. The function then calls encrypt on S
using C as an additional argument and places the output
in a buffer B. B is then compared to a static string, with
the result of the comparison being used to determine if the
function should return success or failure. The encrypt()
function takes a table in the data section of the binary and calls
leftRotate() on it parameterized over C mod 0x3b and
a constant 0x1a4. encrypt() then proceeds to iterate over
each byte BB of the input string, using BB to calculate an
index into the rotated table for which the value is concatenated
to B. The leftRotate() function accepts three arguments:
a buffer P , C, and an additional integer Q. leftRotate()
calls leftRotatebyOne() C times using P and Q as

inputs. leftRotatebyOne() shifts the value in its buffer
Q times in 7 byte chunks in the left direction, wrapping around
when needed. Thus, in order to solve this challenge, we needed
to discover the correct C and S which would result in the value
challenge() would compare the encrypted S to. In order to
do this, we wrote a python script which performed the inverse
of the leftRotate() function on the comparison string
over all C mod 0x3b. By examining the resulting values, we
discovered both the correct C and S to solve the challenge.
The script is provided in breakfast.py.

C. Challenge Set A / Burst

We analyzed the challenge() function in this binary.
We discovered that the function tokenizes its input into three
integers, and then applies a set of restrictions the violation of
which would cause the challenge to return failure. In order to
solve this challenge, we utilized the Z3 theorem-prover via the
bindings provided by claripy in angr to solve for the correct
input. The code is provided in burst.py.

D. Challenge Set A / Flood

We analyzed the challenge() function and noted that
it is intended to calculate the number of primes between 1
and its input, an integer, X . We discovered that the procedure
converting the input string to an integer type was nonstandard,
and found that while it disallowed inputting more than four
digits or any input where any byte was greater than 0x39, it
did not forbid any input character below 0x30. The implemen-
tation of this function subtracts 0x30 from each input byte as
part of the conversion process from a string of digits to an int,
thus leading to an underflow for all character values below
0x30. By leveraging this bug, it is possible to input a string
which causes the function to try and calculate the number
of primes below an extremely large number well outside the
restrictions on user input. Additionally, we noted that the flag
is only printed when the global flood_len is 0, and that
it is set to such by the wdog_handler() function which
is scheduled to run in challenge(). wdog_handler()
sets flood_len to 0 if the length of data received over the
SPI bus is greater than 0x400. From the above behaviors,
we deduced that by leveraging the integer underflow in the
conversion procedure (and thus forcing the watchdog to run),
we could send a significant amount of data over the SPI bus
and cause the watchdog to set flood_len to 0 and cause
the flag to be output. This deduction proved to be correct.

E. Challenge Set A / Parthenon

We noted that a string ctxt was printed during application
startup. To analyze this ciphertext, we leveraged CrypTool [4],
an open source tool for analyzing ciphers. From frequency
analysis, we discovered that this string was likely a columnar
transposition cipher due to its frequency distribution almost
matching that of English. We utilized CrypTool’s transposition
cipher cracker set to brute force a key of maximum length 8
set to R-C-C mode and to utilize the log2 probabilities over
N-grams as the cost function. This setup successfully retreived

the plaintext message. This string, when given to the program,
produced a response indicating that is was the correct input to
solve the challenge. From a theoretical standpoint, it is possi-
ble to identify a columnar transposition cipher from the fact
that its frequency distribution in no way differs from that of
the language of the message (in this case, English). From this
information, it is possible to automatically crack the cipher by
guessing the correct number of columns and their arrangement,
and ranking the resulting plaintext messages by calculating
their probability from the set of bigram probabilities in the
source language; whichever candidate plaintext has a higher
probability (given a sufficiently large ciphertext), is the most
likely. This process can be made more efficient by employing
hill-climbing with simulated annealing or similar techniques.

F. Challenge Set B / Chase

Analysis of this challenge in Ghidra revealed that the
challenge binary switches between different IP addresses and
ports according to a random number generator seeded with the
board’s tick count upon initial connection, which is somewhat
unpredictable due to ticks happening at a rate of 1000 per sec-
ond. Initially, the IP address and port that the challenge moves
to are printed to the console, but in subsequent iterations they
are hidden and it has to be guessed where the challenge server
can be reached next. After six iterations of this address and
port hopping, the challenge is solved. Unfortunately, every
time the challenge moves addresses and ports it also fully
resets the ESP32 module, which we had already determined
was fairly unreliable and frequently caused failed Wi-Fi con-
nections and TCP connection refused errors when attempting
to access challenges. This was very much exacerbated by the
challenge requiring the Wi-Fi to work 6 times in a row, which
statistically was simply not very likely. Therefore, while we
did solve this challenge, due to the sheer unreliability of the
ESP32 Wi-Fi it is not extremely reproducible, and you may
have to run our script many times before the ESP32 decides to
cooperate. The script functions by generating the entire space
of random numbers that the RNG in the code is capable of
generating – since it uses a multiply-add-modulo technique
we can create the full repeating sequence of random numbers
from the generator, and reference the sequence to guess where
the generator state is currently located. The script utilizes
the initial IP address and port information, as well as the
different languages used for the greetings to guess candidate
locations in the RNG space, and once uniquely narrowed down
it is able to completely replicate the board RNG state and
perfectly guess each next IP address and port (we’re confident
that the Wi-Fi failures we are seeing are not associated with
any bugs in this script, since they have also shown up in
nearly every other challenge as well). The script repeats the
guessing and reconnecting process until the challenge is won,
assuming of course the ESP32 doesn’t randomly fail at one
of the points. The script is included in chase.py, with
necessary additional data extracted from Ghidra analysis in
chase.dat.

G. Challenge Set B / Esrom

The challenge() function accepts a string input S
and calculates its digest D using the SHA2() function (this
function is not actually an implementation of SHA2). D is
then compared to a digest stored in the binary, and if they
match, then the function returns success. If D does not match,
the function proceeds to interact with an LED on the board,
turning it off and on with timings determined by a global
string of " ", "0", "1", and "2". We assumed that this
string corresponded to the desired input encoded in Morse
code. We decoded the string, treating "0" as dot, "1" as
dash, " " as the character separator, and "2" as the word
separator (notably, in the actual binary, "0" corresponded to
a long LED and "1" corresponded to a short LED which is the
inverse of the real morse code). By utilizing this methodology,
we successfully recovered the flag.

H. Challenge Set B / Middleman

This challenge proved quite problematic. Upon booting, the
challenge binary prints several message/signature pairs corre-
sponding to an ECDSA scheme based off of a custom curve,
the details of which are also printed, over serial. The challenge
asks that we forge a signature for a given message without
telling us the secret key. ECDSA signatures are composed of
two components: R and S. R is the x-coordinate of a curve
point k ∗G with k being a cryptographically random number
chosen per message. By analyzing the binary, we discovered
that the getRandomNumber() function always returns 4.
Additionally, we note that the R value in all leaked signature
pairs is the same, implying the same k value was used to
generate each signature. This behavior is quite dangerous
under ECDSA, since an attacker having knowledge of the
k value for a message/signature pair allows them to easily
calculate the private key used to generate said message by
the equation S∗k−Z

R , with Z being the most significant n bits
of the hash of the message under some hashing algorithm
and n being the order of the base point G of the curve in
use. Thus, the faulty random number generator present in the
challenge binary would indicate that k was 4 for all of the
message/signature pairs. This assumption proved to be correct.
Unfortunately, we were unable to discover the correct hashing
algorithm used to generate the proper signatures. Without
knowing this algorithm, it was impossible for us to calculate
Z for any message. Given that the integer order of G was
8, the value of Z is restricted to [0, 255]. Through brute
forcing all possible Z values for a known message/signature
pair and our knowledge of k, we discovered the private
key used to generate the messages was 130. Unfortunately,
even with knowledge of the private key, we were unable
to generate signatures due to still lacking knowledge of the
hash function. We attempted to check all common hashing
algorithms, along with the custom algorithms in the SHA2()
and SHA1() functions against the examples printed to the
console in the challenge, but none of these produced the
correct lower bits for all of the examples given. Thus, in order
to solve the challenge, we developed a custom linker script

capable of injecting the challenge binary into a C program
run in the usermode QEMU (c.f. esclinker.py). By using
this program, we developed a brute-forcer for the SHA2()
function in the binary which allowed us to find the correct
challenge input. At first, we assumed that the public key
for the forged signature should be the same as that used
when calculating the leaked signatures. This assumption was
incorrect. We also assumed that the input format would be the
same as the provided examples, which included parentheses
and commas. This assumption also proved to be incorrect.
Thus we moved on to analyzing the SHA2() function in
the originally-released challenge binary, and we found that
it broke the message up into 4 chunks of approximately equal
length and concatenated the results of calls to the SHA1()
function in its output buffer. We noted that the desired output
for the first chunk of the message was quite different from
the expected output, indicating that the public key it was
expecting was not the one in the sample message/signature
pairs. Having learned this, we modified our brute-forcer to
brute force the hash one chunk at a time, thus allowing it
to derive the expected challenge input. By using this method,
we recovered a signature 2202 1168 125 104, which was
accepted by challenge binary. As demonstrated by the fact
that the challenge was later updated, this was an unintended
solution.

I. Challenge Set B / Middleman.UPDATED

The updated version of this challenge proved to be sig-
nificantly different from the original. It is notable that the
hash function was no longer vulnerable to the attack which
allowed us to brute force its input in four discrete chunks.
Additionally, the program strips all instances of parentheses
and commas from the input string and replaces all sequences
of such with a single space so as to normalize the input to
the form of "%d %d %d %d". We assumed that the values
of this input correspond to the x coordinate of the public key,
the y coordinate of the public key, R, and S, respectively.
Given the nature of ECDSA and the faulty random number
generator, x, y, and R are known values. Additionally, S is
bound to [0, 131). Again, we were unable to discern the correct
hash algorithm to utilize to calculate Z for a message. Taking
the provided hints into account, we consulted FIPS 180-4
[7] for the list of approved hash functions for cryptographic
uses (this is also referenced by FIPS 186-4, the elliptic curve
Digital Signature Standard), and were still unable to find any
hash which produced message digests for which the provided
examples of S would be valid, which left us once again unable
to construct signatures despite having obtained the private key
by analysis of the provided example signatures. Therefore, we
tweaked our previous brute-forcer algorithm to account for this
knowledge to determine the correct value for S since we still
didn’t know the correct hash algorithm to use when calculating
Z under the attack discussed in the previous section. With this
we obtained the signature 1341 1979 125 97 which was
accepted by the challenge. The code for this is provided in
middlemanupd2.c.

J. Challenge Set B / Quiz

This challenge prompted the user to answer a series of
math questions presented as English text. We implemented a
parser which accepted a list of tokens as input and computed
the correct response for those given tokens. This challenge
proved potentially more troublesome than intended due to the
fact that the Wi-Fi communication from the board ended up
fragmenting the challenge prompts in a highly unpredictable
and inconsistent manner (randomly cutting off and/or mixing
different parts of the message), which prevented them from
being parsed by the script. The solver is included in quiz.py

K. Challenge Set B / Sequence

We analyzed the challenge() function for this binary.
We note that it tokenizes the input by " " and converts
all tokens to integers via calls to atoi(). It then com-
pares these integers to values stored at certain indices in the
”sequence” global. This variable is populated by a call to
fibbonocci() (which interestingly, does not implement
the Fibonacci sequence). In order to solve this challenge, we
ported the decompilation of this function to a C program
and printed the indices (24 and 28) in question, resulting in
the input that the challenge binary accepted: 0 38. Code is
included in sequence.c

L. Challenge Set C / Game

We noted that this challenge requires the user to play a game
against a dealer until the user either wins or runs out of money.
The game is initiated when the user enter the play command
over SPI. Other than this command, the user has no control
over the game. The challenge() function calculates a seed
for the random number generator upon entry based on the
current time in seconds since the challenge was started, and
this seed determines the output of the game. The challenge
helpfully prints an initial seed value when starting a game
that can be used to recover the board’s tick counter used to
determine the number of seconds. The game is won when the
player obtains at least $1, 000, 000, but the outcome of each
game is determined by the RNG. We utilized the same linker
script as detailed in the Middleman section to brute force a
seed value for the RNG which would result in enough won
games for victory, and from this seed value determined the
correct number of seconds from board startup (around 145) to
wait until starting to game to ensure victory. We developed a
program which would control the board and wait the precise
amount of time prior to starting the game to achieve success.
We have included the code files for the solution game.c and
game.py.

M. Challenge Set C / Hue

We analyzed the challenge function for this challenge in
Ghidra, and noticed that it was setting the LED color based
on an array of data in the binary. We extracted the array and
rendered an image out of the data matching pixel colors to the
way values were decoded into LED outputs by the challenge
code. After guessing various possible dimensions until patterns

in the image seemed to line up, the flag text was revealed as
text in the image data. The decoder script hue.py is included.

N. Challenge Set C / Recycle

This challenge is the classical example of the repeated
use of a one-time-pad. Our solution involved querying the
challenge for a number of distinct ciphertexts. From these
ciphertexts, we generate a tree over all possible plaintexts
of the desired length padded with spaces, and utilize our
knowledge of the input space (a known set of words from
a wordlist extracted from the binary) over multiple instances
of the repeated key and the key’s length to reduce the key
space down to a single value. This method works due to the
fact that for any instance of a character in the ciphertext c at a
specific index i, the corresponding character in the keyspace k
must, when xor’ed together with c, produce a valid character in
the messagespace m at i. From this methodology, it becomes
possible to efficiently eliminate possible keys and converge
upon the correct one as long as enough ciphertexts are known.
The solver script recycle.py is included.

O. Challenge Set C / Virtual1

Analysis of the challenge shows that the challenge is
implemented as a basic instruction emulator with instructions
for adding, subtracting, and multiplying values in 4 registers,
which are initialized to the values 0, 1, 2, 3. The challenge
is completed when the value of register 2 matches the value
of register 3, therefore we provided as input a subtraction
instruction to subtract the value of register 1 from register
3: 1 3 3 1

P. Challenge Set C / Virtual2

This challenge is an extension of the previous Virtual1
challenge, with more instructions available. New instructions
included bitwise operations, and reading and writing registers
to an additional memory array. The goal was to get the value
of memory location 9 to be equal to memory location 8
and register 2. We implemented this with 5 instructions, first
multiply register 3 by itself to produce the value 9, write
register 2 to the memory location specified by register 3,
subtract register 1 from register 3, and write the value of
register 2 to the memory location specified by register 3 again,
then exit. This was encoded as 2 3 3 3 7 3 2 0 1 3 3
1 7 3 2 0 8 0 0 0. A simulator we used to debug this
solution is provided in virtual2.rkt.

Q. Challenge Set D / Corrupt

There were multiple files provided for this challenge:
corrupt.elf, corrupt.hex, and corrupt.heks. We
loaded all the files into Ghidra and determined that the first 2
roughly matched, but the third one was a different program.
Additionally we noticed that Ghidra produced checksum mis-
match warnings on the third file. Static analysis in Ghidra
revealed that corrupt.heks writes a string to flash on-
board the ESP32 module – Privilege Level: 0 Key:
29019203 1B3t9 . The main program in corrupt.hex

then reads back this value and uses the privilege level and
key to attempt an encryption operation consisting of a 10-
round add-rotate-xor cipher which looked similar to Speck
[2]. Because of this, we didn’t attempt any sort of known-
plaintext attack, instead opting to run a simple brute force
of the 32-bit key using the esclinker.py script. The key
was recovered as 575703170 and additionally we needed to
change the Privilege Level to 1. After making these patches to
the string sent by corrupt.heks with Ghidra we exported
a modified version using Ghidra’s export functionality, and
ran it on the challenge board. Then, we ran corrupt.hex
which read back the new values and successfully printed out
the flag.

R. Challenge Set D / Impact

Analysis of this challenge revealed that the challenge func-
tion chose a random number and then required an input string
with a hash with the lower 24 bits equal to the hash of that
number represented as ASCII. The hash function was called
SHA1, but despite this the algorithm looked nothing like the
standard SHA1 algorithm, instead returning a 32-bit hash value
and constants like 0x6e696265 (in ASCII that’s “ebin”, part
of the “egg” series for the Pursuit challenge). We created a C
file compiled with esclinker.py to find a matching input
value by simple brute force, and a python script to automate
the process of receiving the random number generated by the
board and calling the emulation code to produce the hash
collision. We provide the files impact.py and impact.c
as part of the solution.

S. Challenge Set D / Moonlanding

Moonlanding required multiple stages of inputs to solve.
First, by static analysis we determined that a string of 256
characters needed to be sent over Wi-Fi. This triggered a
second stage of code that started to accept raw AT commands
for the ESP32 module over UART. The second stage also
resets the Wi-Fi network to a secured WPA2-PSK network
and an unpredictable password. Finally we determined that
the code was looking for a specific date and time via NTP
– initially we tried the dates and times of the Apollo 11
launch and moon landing, as per the theme, but these didn’t
work. Therefore we brute forced the result it wanted using
esclinker.py and determined it was looking for Wed
Dec 31 20:09. We adapted an open source NTP server
implementation in python from GitHub to always return this
date and time, and used the following AT commands to change
the wifi back to unsecured and enable the NTP client to
connect to the server: at+cwsap="ESC-2020","",5,0,
at+cipsntpcfg=1,0,"192.168.4.2". (We set a static
IP 192.168.4.2 locally to avoid the error-prone and unre-
liable ESP32 DHCP process during every Wi-Fi connection.)
However, during this stage we struggled with the reliability
of the challenge code, each command needed multiple tries
until it was accepted (therefore we were not able to produce
a script that can automatically solve the challenge, it needs
humans present). Next, entering DEBUG MODE OFF exits

the debug mode and triggers the NTP date and time check,
which will print the flag to the next TCP connection to
the challenge server. The code files ntpserver.tar and
moonlanding.c are provided.

T. Challenge Set D / Pursuit

When connecting to this challenge over the Wi-Fi, the
following text is printed

Greetings! You are connected...

Y2FuIHlvdSBmaW5kIG1lPw==
Enter String:

The base64 string in this output decodes as can
you find me?. Previously we had identified some
debug symbols in the other setD binaries called egg_1 -
egg_7, which corresponded to character arrays containing
fragements of text – when put in order, these formed the
URL https://pastebin.com/wCdPGYah, which
when accessed contained the text How did you find
me?! The answer you are looking for is
"345732_399_hun7". We attempted to input the provided
flag in this text, and it was accepted by the challenge.

IV. CONCLUSION

In conclusion, the NUSec CTF team was able to utilize
a number of open-source and in-house developed tools in
order to solve all released challenges in the 2020 CSAW-
ESC. Over the course of the challenge, we developed tools
and methodologies to perform both static and dynamic anal-
ysis along with dynamic instrumentation. Furthermore, even
though we did not need to utilize it to solve a challenge, we
developed the ability to inspect traffic over the SPI bus. Across
all challenges, the primary difficulty we experienced was not
inherent to the challenges themselves, but rather it was related
to the viability of the challenge platform. We would often
find that challenges would fail to boot after flashing them to
the board (e.g., amnesia) or that the board would randomly
refuse connections to the specified port for unknown reasons.
Because of these issues, it was often the case that our solver
scripts would run in a non-deterministic fashion and would
only sometimes achieve success due to difficulties interacting
with the platform. In order to somewhat mitigate these issues,
we developed and integrated a high level of fault tolerance
into our tooling for interacting with the platform. In addition
to this hurdle, it was somewhat difficult to determine what
output of certain challenges constituted a flag due to a lack
of a standardized flag format. It is apparent by looking at our
appendix that the format of flags and solutions that they wildly
vary in format. Despite these issues however, we were able to
solve every provided challenge as well as the original version
of the Middleman challenge.

REFERENCES

[1] N. S. Agency. Ghidra. https://ghidra-sre.org/, 2019. [Online; accessed
28-October-2020].

[2] R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks, and
L. Wingers. The simon and speck families of lightweight block ciphers.
Cryptology ePrint Archive, Report 2013/404, 2013. https://eprint.iacr.org/
2013/404.

[3] L. De Moura and N. Bjørner. Z3: An efficient smt solver. In International
conference on Tools and Algorithms for the Construction and Analysis of
Systems, pages 337–340. Springer, 2008.

[4] C. developers. Cryptool. https://www.cryptool.org/en/, 2020. [Online;
accessed 29-October-2020].

[5] Q. developers. Qemu. https://www.qemu.org/, 2020. [Online; accessed
28-October-2020].

[6] mumbel. ghidra riscv. https://github.com/mumbel/ghidra riscv, 2020.
[Online; accessed 29-October-2020].

[7] NIST. Fips 180-4. https://doi.org/10.6028/NIST.FIPS.180-4, 2014.
[Online; accessed 29-October-2020].

[8] pwntools developers. pwntools. https://github.com/Gallopsled/pwntools/,
2020. [Online; accessed 28-October-2020].

[9] sigrok developers. sigrok. https://sigrok.org/wiki/FAQ, 2020. [Online;
accessed 29-October-2020].

V. APPENDIX: SOLUTIONS
Set Challenge Name Input/Flag Points

A Amnesia
+SYSFLASH:64,〈asdfasBBBBBB*BBBBBBBBBBBB0200AAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAg]Z 130
A Breakfast 4 ItsNotBaconian 100
A Burst 3880960 2209 6506496 50
A Flood *SaveforReport?TarbelaItaipu?Hoover?AtatuRK 100
A Parthenon youmeantotellmethatmyclassicalcipherisntsecure 70
B Chase 1*4mH3r3 100
B Esrom remorseful 70
B Middleman 2202 1168 125 104 (150)
B Middleman.UPDATED 1341 1979 125 97 150
B Quiz 125220C-61595A+ 130
B Sequence 0 38 50
C Game D0u8l3d0x4+Wice;e2 1191 271567 150
C Hue THINKCOLORFULLY 150
C Recycle Flag:Uoˆ/’B〈 4502d372142004e4c48106358594821334e0f5a444b0b6c72 100
C Virtual1 1 3 3 1 50
C Virtual2 2 3 3 3 7 3 2 0 1 3 3 1 7 3 2 0 8 0 0 0 100
D Corrupt f149=1 h4v3 bin REst0red!! 200
D Impact .Flag:Yˆ-Wf’〉H-KW2x〈N 150
D Moonlanding AT+Fl4g=oThisDaFl4gGYFl4gs 250
D Pursuit 345732 399 hun7 100

Total 2200

