
Husky Records confidential

Husky Records
@Northeastern University

Cameron Kennedy
Christopher Brown
Dennis Giese
Erik Uhlmann
Trey Del Bonis

Advised By: Prof. Guevara Noubir
www.huskyrecords.net

German Engineering
Made in USA

Husky Records confidential

Outline

Team and Organization

Secure System Design
RISC architecture is gonna change everything...

Attacks!
Lots of attacks

General Comments

2

Husky Records confidential

Last year's team: DeNUvo (eCTF2019)
read more here:
www.huskyrecords.net/2019/

3

Husky Records confidential

Prof. Guevara Noubir (advisor)

Dennis Giese (lead, build environment, testing, attack team)

Cameron Kennedy (microblaze, crypto, attack team)

Christopher Brown (mipod, deploy scripts)

Erik Uhlmann (fpga design, crypto, attack team)

Trey Del Bonis (merkle tree, crypto, docs)

4

The Husky Records Team (eCTF 2020)

Husky Records confidential

Organization

- No class, no credits
- Ordered 2 additional development boards
- In the early phase:

- meeting every week, discussing design
- setting up build cluster (based on 5 ESXi servers)

- 2 Days before begin of Attack phase
- Design works, but MB is too slow
- Crypto cannot be optimized to meet timing requirements
- Started to redesign crypto (sleep is overrated)

- When campus was purged:
- Distribution of boards, remote development

5

And I made some pancakes…

Husky Records confidential

Secure System Design

Possible attack methods

○ Exploit design flaws
○ Exploit MB code (buffer overflow & friends)
○ Hardware attacks (glitching, side channel)
○ Brute force PINs or secrets
○ Dump MB memory (shhh more on this later)

6

Solution: Sue everyone using our EULA
Layer the defenses

Husky Records confidential

Secure System Design

● Use modern cryptographic primitives
○ Monocypher library: HMAC-Blake2b, EdDSA, XChaCha20, Poly1305
○ Argon2id hashing
○ Blockchain technology (Blake2b Merkle trees)

● Implement capabilities with pure crypto — minimal runtime checks
● Complex key derivation processes
● Store secrets in FPGA fabric
● Protections for memory errors and glitching
● Reset on any detected anomaly
● Make reverse engineering annoying

7

Husky Records confidential

Flowcharts!

8

Login process

Goals: authenticate users, authorize playing user songs, resistant
against online/offline brute force

● Input: user info and entered PIN
● ARM HMAC
● MB HMAC
● Argon2id (check correct PIN)
● User info signature verification
● Mix with FPGA hardware secrets
● Derive user keys

Husky Records confidential

Secret Storage

Question: where do you store secrets?

● ARM binary
○ easy to extract

● MB binary
○ difficult to extract, but could be possible

9

● Embedded in FPGA fabric
○ Good luck!!

FPGA fabric secrets used to
derive user keys using kingcrab
FPGA module

Husky Records confidential

Flowcharts 2

10

Song playback

Goals: correct authorization (valid user, valid region), prevent
tamper, prevent custom music

● Factory signature verification on metadata
○ Factory signing secrets never leave provisioning

● Owner keys authorize playback (for owner and shared users)
○ Deriving the user song key is a signed key exchange with the owner

● Region key stored on MB
● Song key = (user song key) ^ (region key)
● Merkle tree used for tamper protection

Husky Records confidential

Additional Protections

● State-of-the-art Data and execution Access 🅱revention (DAB) mechanism
○ Immediate wipe of sensitive buffers, then MB reset
○ 4 second (glitch-protected) delay in main()

● Stack canaries, branch glitching checks -> DAB
● All MB exceptions enabled -> DAB
● Invalid signature, invalid merkle proof, wrong PIN, … -> DAB

○ The official miPod player performs checks to prevent DAB
○ Custom player: good luck!

● XADC module: voltage and temperature alarms
○ Any alarm triggers reset

● Remove MB interrupt
○ No way to disturb secure DRM operations

11

Husky Records confidential

Attacks

12

Flags / Teams Husky Records Competitor 1 Competitor 2 Competitor 3 Competitor 4 Competitor 5 Competitor 6

Custom Music 🏴‍☠ Freepod 🏴‍☠ Freepod 🏴‍☠ Freepod 🏴‍☠ Freepod 🏴‍☠ Freepod 🏴‍☠ Freepod 🏴‍☠ Freepod

Music Tamper 💀 bug in
digital_out

🐘 truncated file 📖 readback 🗑 trashed file 🗑 trashed file 🗑 trashed file 🗑 trashed file

Pin Extraction ??? 🖥 online
bruteforce

📖 readback 📖 readback 📖 readback 📖 readback 🖥 online
bruteforce

Region Lock ⚠ suspected 📖 readback 🏎 race
condition

🔀 swapped
headers

📖 readback 🏎 race
condition

📖 readback

Unauthorized
Play

??? ☑ possibly
brute forceable

no time :(

🏎 race
condition

🔀 swapped
headers

📖 readback 🏎 race
condition

📖 readback

Husky Records confidential

FPGA Attacks

13

● Bitstream security level prevents
readback via USB/JTAG interface
○ MITRE boards can enable JTAG with PS

register
○ Bitstream readback is blocked :(
○ Reconfiguration is blocked :(

● Does not apply to PCAP
○ Bridge between PS and PL configuration, used

by FSBL for initial programming
○ Readback allowed!

● PL can be reset from the PS via register
○ New bitstream can be loaded

Husky Records confidential

Freepod (arrrrr!)

● Reset FPGA using PS reset register
● Program super insecure example

bitstream
● Play custom music like a true pirate

Impact

✅ Custom Music

Mitigation

● Use the STARTUPE2 block in FPGA
design to ignore resets

14

Husky Records confidential

Bitstream Readback

PCAP can be used to read back secure bitstreams
Program the readback on non-MITRE boards (faster online brute force, easy)
Extract MB binary from BRAM and extract secrets (hard)

Challenges

● PCAP is poorly documented
● Bitstream format is poorly documented
● No existing readback example code
● BRAM is randomly ordered & scrambled

15

Husky Records confidential

Bitstream Readback Steps

● Use our bare metal PS tool to read back PL and dump to SD card
○ Our friend uEnv.txt from last year is helpful for deploying tool over multiple designs
○ Dumps each design in ~1 second

● Use SymbiFlow Project X-Ray BRAM database to decode bits from dump
○ Obtain 100 bit sequences which are potential BRAM elements
○ 32 of the bit sequences form the bits of each word in the original MB code

● Brute-force bit sequence order to assemble binary
○ Use statistical analysis to guess order which best matches our MB builds for designs
○ ~3200 iterations, completes in seconds

● Extract secrets from reassembled binary

16

This would have been basically impossible without
the SymbiFlow data — check it out at
https://github.com/SymbiFlow/prjxray

Husky Records confidential

Bitstream Readback (all your secrets are belong to us)

Depending on implementation
✅ Region Lock
✅ Unauthorized Play
✅ Pin Extraction
✅ Music Tamper

Mitigations

● Store secrets embedded in PL fabric
○ We are not convinced it’s possible to extract these

with any current tooling in < 60 days
● Design crypto resistant to secrets leaks

○ This was the one flag we ran out of time to get :(17

Husky Records confidential

Other Attacks

● Music Tamper — trashing and truncating songs was very successful
○ Mitigation: make sure to do full integrity verification over all song data
○ Make sure each song is unique, swapping headers should be invalid

● Online pin brute force (look ma no readback!)
○ Mitigation: add delays to login process; ensure online brute force won’t complete in time
○ The PS can trigger MB resets, make sure delays are persistent

● Race conditions on integrity checks
○ The DDR is shared memory, and can be changed by the PS during MB processing
○ Hash checks and authenticated encryption bypassed by changing the data after the integrity

check on the MB
○ Mitigation: ensure all important data is copied to BRAM before integrity checks

18

Husky Records confidential

Husky Records 2.0

19

● Fixing our bugs
● Add additional FPGA hardware-secret-based derivation to everything

○ User login
○ Song playback
○ Sharing

● Hardware-based glitch detection
○ PicoBlaze cores

Husky Records confidential

General Comments
What design elements made things difficult for you as an attacker?
A: any element that made readback mandatory vs some easier attack

solid login rate limiting, proper user secret derivation
MB code with no standard vulns (race conditions, memory errors, …)

What are two pieces of advice that you would give to future eCTF participants?
A: read the manual, it’s got some cool info in it

assume your design is vulnerable, and layer defenses to protect it anyway

What would you do differently if you had to participate in this same competition again?
A: store more secrets in PL fabric

and actually finish the design before the attack phase starts :)

20

Husky Records confidential

That’s all folks!
Any questions?

“I keep face-palming here. Our design is such that we have a big unobtanium door with like 10 locks on it taped into the doorframe and with all the windows open”
-- Cameron

21

